Korteweg – de Vries equation: solitons and undular bores
نویسنده
چکیده
The Korteweg – de Vries (KdV) equation is a fundamental mathematical model for the description of weakly nonlinear long wave propagation in dispersive media. It is known to possess a number of families of exact analytic solutions. Two of them: solitons and nonlinear periodic travelling waves – are of particular interest from the viewpoint of fluid dynamics applications as they occur as typical asymptotic outcomes in a broad class of initial/boundary-value problems. Two different major approaches have been developed in the last four decades to deal with the problems involving solitons and nonlinear periodic waves: inverse scattering transform and the Whitham method of slow modulations. We review these methods and show relations between them. Emphasis is made on solving the KdV equation with large-scale initial data. In this case, the long-time evolution of an initial perturbation leads to formation of an expanding undular bore, a modulated travelling wave connecting two different non-oscillating flows. Another problem considered is the propagation of a soliton through a variable environment in the framework of the variable-coefficient KdV equation. If the background environment varies slowly, the solitary wave deforms adiabatically and an extended small-amplitude trailing shelf is generated. On a long-time scale, the trailing shelf evolves, via an intermediate stage of an undular bore, into a secondary soliton train.
منابع مشابه
Generation of internal undular bores by transcritical flow over topography
In both the ocean and the atmosphere, the interaction of a density stratified flow with topography can generate large-amplitude, horizontally propagating internal solitary waves. Often these waves appear as a wave-train, or undular bore. In this article we focus on the situation when the flow is critical, that is, the flow speed is close to that of a linear long wave mode. In the weakly nonline...
متن کاملGeneration of solitary waves by transcritical flow over a step
(Received ?? and in revised form ??) It is well-known that transcritical flow over a localised obstacle generates upstream and downstream nonlinear wavetrains. The flow has been successfully modeled in the framework of the forced Korteweg-de Vries equation, where numerical and asymptotic analytical solutions have shown that the upstream and downstream nonlinear wavetrains have the structure of ...
متن کاملTranscritical flow over a hole
Transcritical flow over a localised obstacle generates upstream and downstream nonlinear wavetrains. In the weakly nonlinear long-wave regime, this flow has been modeled with the forced Korteweg-de Vries equation, where numerical simulations and asymptotic solutions have demonstrated that the upstream and downstream nonlinear wavetrains have the structure of unsteady undular bores, connected by...
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کامل